ANALYSIS OF PROMETHIUM-147 IN AQUEOUS SAMPLES§

<u>Peter Cable</u>, QST Environmental Inc. 404 SW 140th Terrace, Newberry, Fl 32669, Tel: (352)332-3318, email: phcable@qstmail.com; and William Burnett, Environmental Radioactivity Measurement Facility, Department of Oceanography, Florida State University, Tallahassee, Fl. 32306-3048, Tel: (850)644-6703, email: wburnett@mailer.fsu.edu

The fission product ¹⁴⁷Pm (t_{1/2} 2.6 yrs.) can be of environmental and health concerns. We have developed a method for the analysis of ¹⁴⁷Pm and ¹⁵¹Sm in aqueous solutions based on the extraction chromatographic resin LN ResinTM (Eichrom Industries, Inc.). Under specific column conditions promethium and samarium are separated from common matrix elements, most REE's, as well as other potentially-interfering radioactive elements. Elution curves (**Figure 1**) show that promethium and gadolinium are separated from americium and bismuth, both of which could interfere with the final analysis. Strontium-90, another common fission product, passes through LN ResinTM while it's daughter yttrium-90 is retained and does not co-elute with promethium.

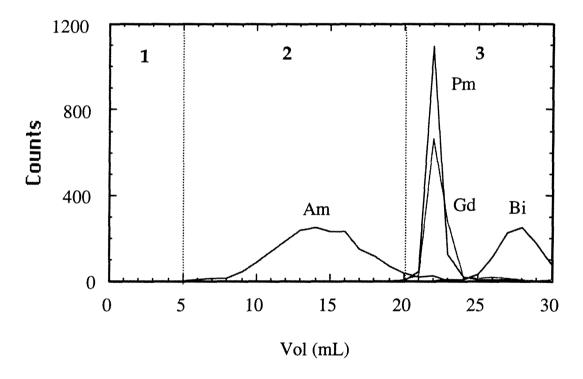


Figure 1. Elution curves for promethium, gadolinium, americium, and bismuth. The numbering sequence corresponds to: (1) sample load in 0.2M HNO₃; (2) rinse with 0.2M HNO₃; (3) promethium elution with 1M HNO₃.

[§]For presentation at the 43rd Annual Conference on Bioassay, Analytical and Environmental Radiochemistry; Charleston, South Carolina; November 10-13, 1997.

Two separate chemical yield tracers have been investigated. Stable samarium or an alpha-emitting isotope, ¹⁴⁸Gd (3.18 MeV), may be used. When using samarium an aliquot of the final elutent is submitted for chemical yield determination by ICP analysis. Using ¹⁴⁸Gd allows for the simultaneous alpha/beta counting. The overall chemical separation is straightforward (**Figure 2**) and should be amenable to batch processing. After tracer selection and addition, a 0.5-2 L water sample can be concentrated by a CaHPO₄ scavenge or by evaporation. The resulting sample is then picked-up in the 0.2M HNO₃ load solution and

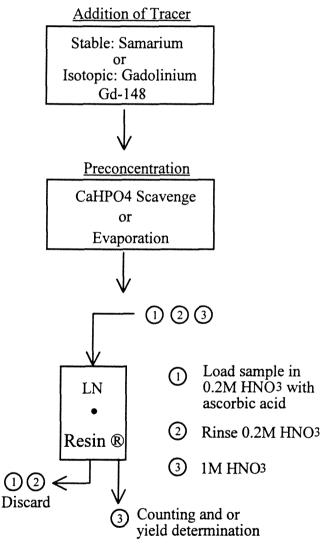


Figure 2. General flow diagram showing the isolation of promethium, samarium, and gadolium from an aqueous sample.

passed over a preconditioned LN ResinTM column. After rinsing with 0.2M HNO₃ promethium, samarium, and ¹⁴⁸Gd are eluted with 1.0M HNO₃. Source preparation for a

gas-flow proportional counter could include fluoride coprecipitation/filtration or electrodeposition. Liquid scintillation counting is also possible.

By using polyethylene absorbers and successive countings both 147 Pm (224 keV) and 151 Sm (76 keV) may be quantified. If 151 Sm is of no interest it's weak beta can be omitted by using an appropriate absorber.